
INTRODUCTION

MOST COMPONENTS of the photosynthetic electron trans-
port chain (PETC) of higher plants have redox poten-

tials implying that their reduced forms can reduce dioxygen
(Fig. 1). The article in which it was first stated that dioxygen
can be a final acceptor of electrons from PETC appeared 50
years ago (49), and “Mehler reaction” is now an accepted
name of this process.

Mass spectrometric analyses of simultaneous 16O2 photo-
evolution from H2

16O2 and photoconsumption of 18O2 in both
algae and higher plants have demonstrated conclusively the
presence of a Mehler reaction in vivo even during maximal
CO2 photoassimilation (for reviews, see 8, 59, 63). The au-
thors of a recent analysis (9) stated that the contribution of
electron transport to oxygen in total electron transport
through PETC in vivo is no more than 10% even under stress
in C3 plants, and appreciably higher in C4 plants, algae, and

cyanobacteria. Although even 10% of electrons passing
through the PETC provides considerable reduction of O2 mol-
ecules, the capacity of this process possibly varies with
growth conditions and age, and additional data are needed to
obtain a complete picture (47, 65). The existence of dioxygen
reduction in PETC at maximal rates of NADP+ reduction was
repeatedly shown in vitro. The electron flow to O2 was found
to be between 5 and 30% of the sum of electron flows to O2
and NADP+ in isolated thylakoids of spinach (1, 22) and pea
(61) in the presence of added ferredoxin (Fd). In the
thylakoids from oat (C3 plant), the electron flow to O2 in the
same conditions was as high as 80% of the sum of electron
flows to O2 and NADP+ (66).

The superoxide radical (O2
·2) is the product of one-

electron O2 reduction. In vivo superoxide is rapidly converted
by superoxide dismutase (SOD) into hydrogen peroxide
(H2O2). The reactions of H2O2 with transition metals (Fe, Cu)
or with O2

·2 can produce hydroxyl radicals (HO·). The O2
·2,
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H2O2, and HO· belong to reactive oxygen species (ROS) that
also include peroxyl radicals and hydroperoxides of organic
molecules and singlet oxygen. Here we give more attention to
the production of reduced forms of dioxygen. The exact reac-
tions leading to the appearance of such ROS in chloroplasts
remain obscure. The production of singlet oxygen is not a di-
rect result of photosynthetic electron transport, although it
depends on electron outlet from primary acceptors of photo-
systems, because this in turn determines the concentration of
chlorophyll triplets. The interaction of dioxygen with these
triplet states is the main pathway of singlet oxygen generation
in chloroplasts (for review, see 44).

Because of its specific structure of outer electron orbitals,
dioxygen itself can oxidize the majority of biological sub-
stances only at low rates. However, reduced forms of oxygen,
O2

·2, H2O2, and HO·, easily oxidize proteins, lipids, and nu-
cleic acids, depriving them of their functions. Thus, light en-
ergy produces reductants in PETC, and their reaction with O2

produces the active oxidants. We must distinguish the redox
status of chloroplast stroma from its ROS status. In the light,
an averaged redox potential of stroma can decrease, whereas
the averaged ability of stroma to oxidize the biological mole-
cules can rise.

Chloroplasts have powerful ROS scavenging systems,
which is a trenchant argument for significant O2 reduction
there. Particular systems for ROS scavenging are found in
chloroplasts for O2

·2, H2O2, peroxyl radicals, and hydroper-
oxides (6, 56). HO? is so reactive that it is eliminated in the
course of reactions. The role of electron transport in the scav-
enging systems is to regenerate the specific reductants of
ROS, first of all ascorbate and glutathione. However, changes
in amounts of ROS and, tightly connected with them, low-
molecular antioxidants, ascorbate and glutathione, can carry
out the function of a signal for induction of the cell compo-
nents, unconnected with ROS annihilation (56). So, we will
briefly discuss the use of ROS to convey signals that defend
the cell from themselves, and als\o regulate the PETC.

PRODUCTION OF ROS 
IN PHOTOSYSTEM II (PS II)

The PETC from the water-oxidizing complex to the sec-
ondary quinone acceptor QB is known to be very vulnerable
to damage. The role of ROS in the photodamage processes in
PSII has been discussed (27, 46). Several ROS can appear in
PSII. The singlet oxygen is produced mostly through the
triplet state of P680, 3P680, which in its turn results from
charge recombination within the radical pair P680+Pheo2

when PSII acceptors are reduced. Excessive light can gener-
ate double reduced primary quinone acceptor QA and that
increases the probability of acceptor-side-induced photo-
inhibition (25, 27).

The thermodynamic characteristics of the components of
PSII acceptor side permit oxygen reduction as a one-electron
process (Fig. 1). The circumstances—that an electron trans-
fer from pheophytin (Pheo) to QA is very fast [<200 ps (16)],
as well as that the prompt recombination between Pheo2 and
P680+ takes place in the presence of reduced QA (67)—imply

that the oxidation of Pheo2 by O2 is unlikely. From their Em

values (Fig. 1), the reduction of O2 by reduced QA is possi-
ble, but again fast electron transfer to QB [200–500 µs (16)]
may compete with it. Photoproduction of H2O2 at low rates,
close to 1 µmol (mg Chl h)21, was found in the fragments of
thylakoid membrane enriched PSII (PSII particles) and was
suppressed there by 3-(3,4-dichlorophenyl)-1,1-dimethyl-
urea (DCMU) (70). Superoxide production in the presence of
DCMU in isolated whole thylakoids has been found to be al-
most absent (7). In PSII particles, some pool of plasto-
quinone (PQ) is present (45) and the secondary quinone ac-
ceptor QB can emerge. The latter seems to point to QB as the
electron donor to O2 in spite of the Em7 of the pair QB/QB

2

(Fig. 1). The participation of QB
2 in oxygen reduction might

be the result of its relatively long lifetime. Double reduced
quinone acceptors of PSII also may be considered as species
that are able to reduce O2. However, the appearance of QA

22

under normal conditions is an unlikely event; rather it leads
to the release of QA from its binding site. The Em7 for the pair
QB

2/QB
22 is favorable for O2 reduction, but the existence of

unprotonated forms is possible only under extremely alka-
line conditions (values of both pKs > 10). Really, some in-
crease of H2O2 formation at alkaline pH was shown in PSII
particles (70).

Recently, we found stimulation of oxygen uptake in PSII
particles placed in the medium with pHs higher than 8.5
(Fig. 2). It is known that such conditions lead to impairment
of electron donation to P680+ from water, and this was proved
in our preparations by the measurements of fluorescence in-
duction (40). The direct disruption of water-oxidizing com-
plex by Tris treatment also increased the rate of oxygen up-
take (Fig. 2). The artificial donors to PSII, MnCl2 and
1,5-diphenylcarbazide (DPC), added to these particles sup-
pressed an oxygen uptake (Fig. 2) and restored the form of
the fluorescence induction curve (data not shown). All the
above data indicated that the stimulation of oxygen uptake
rate is the result of events on the donor side of PSII under
conditions when the donation of electrons was impaired.

What mechanism underlies the observed phenomenon? An
increase of singlet oxygen production followed by its reaction
with organic molecules could theoretically lead to an increase
in oxygen uptake. However, it has been found in experiments
with thylakoids that the formation of singlet oxygen did not
occur when the water-oxidizing complex was damaged by
Tris treatment (25). The observed increase in oxygen uptake
rate was partly conditioned by an increased rate of oxygen re-
duction as catalase decreased this rate at alkaline pH, whereas
the effect was much lower at neutral pHs (Fig. 2, inset). How-
ever, as the presence of artificial donors diminished the effect
of catalase, an increase in O2 reduction did not arise solely
from a decrease of redox potential of immediate donor to O2
at alkaline pHs. Possibly, an increase in O2 reduction is an in-
direct result of impairing electron donation to P680+. This
possibility is supported by the finding that treatments of PSII
particles with either CaCl2 or tetracyane ethylene (which de-
stroy the water-oxidizing complex) induces cytochrome c
photoreduction (4). Also, light intensity-dependent genera-
tion of superoxide in such particles with destroyed water-
oxidizing complex was observed (14), whereas in unmodified
particles such generation was not detected (26). The immedi-
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ate donor of electrons to O2 under impaired electron donation
to P680+ is not yet known.

The considerable part of increasing oxygen uptake at high
pHs cannot be explained by an increase in oxygen reduction.
We have suggested that the main reason for the oxygen up-
take stimulation was an appearance of the radicals of organic
molecules on the donor side of PSII, caused by oxidation by
long-lived P680+, the strongest biological oxidant known so
far (41), followed by an interaction of these radicals with
oxygen. The latter could lead to peroxyl radical and hydroper-
oxide formation. The possibility of transfer of the detached
electrons to O2 under aerobic conditions prevents prompt re-
combination of P680+ with primary acceptors. Inhibition of
oxygen uptake rate by DCMU (Fig. 2), which accelerates
charge recombination between Pheo2 and P680+, is explained
then by the decrease of the P680+ lifetime. It may be relevant
that in Tris-treated PSII particles the photobleaching of
carotenoids was almost completely inhibited by DCMU, but
increased in the presence of ferricyanide (42). P680+ has been
proposed as the major active species, which causes photoinhi-
bition in vivo (5). Our data imply that the emergence of the
hydroperoxides accompanies the destructive events detonated
by P680+.

PRODUCTION OF ROS IN PQ POOL

The role of the PQ pool in the production of ROS is often
ignored. Although the thermodynamic possibility to reduce
dioxygen by components of the PQ pool is recognized, the di-

rect experimental data about this process are rare. The possi-
bility of this reaction in the light is indicated by oxygen
uptake in the presence of the PQ analogues 2,5-dibromo-
6-isopropyl-3-methyl-p-benzoquinone (DBMIB) and 2,3-
dimethyl-5,6-methylenedioxy-p-benzoquinone (DIMEB), which
are inhibitors of plastoquinol (PQH2) oxidation by the cyto-
chrome b6/f complex (17). The authors concluded, however,
that these inhibitors mediate electron transport between com-
ponents of the PQ pool and O2.

Figure 3 shows the pH dependence of the oxygen uptake
rate in illuminated pea thylakoids in the presence of dinitro-
phenyl ether of 2-iodo-4-nitrothymol (DNP-INT), a nonau-
tooxidable inhibitor of PQH2 oxidation by the cytochrome
b6/f complex (69), in comparison with such a dependence in
untreated thylakoids. DCMU (Fig. 3) and catalase (data not
shown) inhibited oxygen uptake in the presence of DNP-INT,
indicating that O2 was reduced by electrons from water with
H2O2 as a final product (39). Above we suggested that the
components of PSII acceptor side do not add appreciably to
an overall oxygen reduction in thylakoids. Thus, the observed
oxygen uptake (to be correct, its DCMU-dependent part) in
the presence of DNP-INT is the result of oxygen reduction by
the PQ pool.

One-electron reduction of dioxygen in the PQ pool can
occur with participation of the plastosemiquinone radical
(PQH·). The thermodynamic properties of the couples
PQ/PQH · and O2/O2

·2 satisfactorily explain the increase in
oxygen uptake up to pH 6.5 observed in Fig. 3. In the pH
range studied, the redox potential of O2/O2

·2 does not change
(pK 4.8), whereas that of PQ/PQH· decreases up to pH close
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FIG. 2. Light-induced oxygen uptake
rates in the fragments of thylakoid mem-
brane enriched PSII. h , in the absence of
additions; j , in the presence of 5 µM
DCMU; Ñ, in the presence of 1 mM DPC; m ,
in Tris-treated fragments in the absence of
additions. Inset: Effect of catalase on oxygen
uptake rates in untreated fragments at pH 6.5
and pH 9.0. The electron donor for PSII,
DPC, was added where indicated at 1 mM.
The data are from reference 40.
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to the PQH · pK (6.0) (24), which may be higher in a mem-
brane. One-electron reduction of O2 in the PQ pool was con-
firmed by the facts that, in the presence of ascorbate as the
superoxide trap, the rate of oxygen uptake increased, and the
increment was completely suppressed by SOD. The superox-
ide formation in the presence of DNP-INT was shown in the
work (15) as well.

The rate of O2
·2 formation in the PQ pool, calculated from

the rate of oxygen uptake in Fig. 3, was ,25 µmol (mg Chl)21

h21 at pH above 6.5. The initial rate of dark oxidation of the
reduced PQ pool after switching off the light, which we cal-
culated using previously published data (48), turned out to be
almost the same. We found (39) that superoxide radicals de-
tected in the medium averaged 20–25% of those potentially
formed, the quantity of which was calculated from the oxygen
uptake rate. To overcome such a discrepancy, we proposed
that oxygen reduction in the PQ pool occurs inside a mem-
brane as a two-stage autocatalytic process (Fig. 4). It is im-
portant that reduction of superoxide in the reduced PQ pool is
extremely favorable owing to high difference in Em0 values of
the pairs PQH ·/PQH2 (370 mV) and O2

·2/H2O2 (940 mV) (6).
The newly generated PQ·2 can reduce a new molecule of O2,
and so on. The concentration of PQ·2 in the PQ pool will be
low if the dismutation reaction (equilibrium constant is
,10210) is the sole means of its formation. An additional
mechanism of PQH· generation, such as the one that we pro-
pose, can increase the steady-state PQH · concentration and,
accordingly, oxygen reduction.

One important and distinctive feature of oxygen reduction
in the PQ pool has to be noted. The number of PQ molecules
in the thylakoid membrane is an order of magnitude greater
than that of the reaction centers of the photosystems, and
their diffusion inside the membrane may be rather quick (for
reviews, see 28, 62). PQ molecules are distributed throughout

the thylakoids with somewhat higher concentration in stroma-
exposed membranes (36). Thus, under illumination, some
level of PQ pool reduction will spread throughout the thyla-
koid membrane, and O2

·2 and H2O2 may appear even where
the complexes of PSII and of photosystem I (PSI) are absent.

What contribution does oxygen reduction in the PQ pool
make to the Mehler reaction in vivo? It is seen from Fig. 3 that
the rates of oxygen uptake in thylakoids in the absence and in
the presence of DNP-INT are not considerably different at pH
higher than 7.2, i.e., in the range of physiological pHs in
chloroplasts. It is noteworthy that at these pHs the rate in the
absence of DNP-INT was weakly stimulated by uncoupler as
was the rate in the presence of inhibitor (39). We have also
found that at pH higher than 7.0 the rate of oxygen uptake in-
creased with temperature more in the presence of DNP-INT
than in its absence (34). It was proposed that the increase of
the rate of oxygen reduction in the PQ pool was responsible
for the increase of oxygen uptake in untreated thylakoids.

Thus, we think that under some conditions the reduction of
O2 in the PQ pool may contribute appreciably to the Mehler
reaction.

OXYGEN REDUCTION AT
ACCEPTOR SIDE OF PSI

The components of the PSI acceptor side, which have the
lowest redox potentials among PETC carriers, are considered
to be major O2 reducing agents in chloroplasts. It was shown
in the experiments with spinach thylakoids that illumination
led to generation of superoxides as the primary product of O2
reduction (7). In this work, the authors did not observe the
stimulation of superoxide production by Fd, and suggested
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FIG. 3. Light-induced oxygen up-
take rates in thylakoids under inhi-
bition of PQ pool oxidation via cy-
tochrome complex. V , in the absence
of additions; v , in the presence of 5
µM DNP-INT; l , in the presence of 5
µM DNP-INT plus 20 µM DCMU. The
data are from reference 39.
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that O2
·2 generation occurred in the course of oxidation of the

primary PSI acceptors. Takahashi and Asada (68) presented
evidence supporting the location of that process in the
lipophilic interior of the membrane.

It was recently observed (6) that the rates and other charac-
teristics of photoreduction of dioxygen (Km for O2 and satu-
rated light intensity) in washed thylakoids are highly different
from those in isolated intact chloroplasts and in leaves; the
rates are much higher in intact systems. Thus, the participa-
tion of some stromal components in the photoreduction of
dioxygen in vivo is required. Fd, a water-soluble protein with
low (2420 mV) redox potential, was most often taken as a
major O2 reducing agent in chloroplasts. The high stimulation
of oxygen uptake by the added Fd was shown repeatedly in
isolated thylakoids (1, 18, 22, 32, 64). A two-step oxygen re-
duction scheme proposed by Allen (2) stated that Fd reduced
both dioxygen to superoxide and then superoxide to H2O2.
This scheme adequately explained the peculiarity of Fd-
stimulated oxygen uptake, namely, its inhibition by SOD, as
well as the failure of the stimulation of superoxide production
by Fd (see above).

However, the rate of oxidation of artificially reduced Fd by
oxygen was found to be low (23, 29). The value of the second-
order rate constant of O2 reduction by Fd, 103 M21 s21 (23),
provides the rate of this process of the same order of magni-
tude as ones observed in vivo, if Fd in the chloroplast would
be totally reduced. A direct oxidation of Fd hardly could to-
tally explain the O2 reduction rates observed in vivo, when a
major physiological electron acceptor CO2 is available (for re-
views, see 59, 63), and in vitro under the maximum rates of
NADP+ reduction (1, 22, 61). Ivanov et al. (32) in experiments
with isolated thylakoids identified two reactions of Fd-
dependent O2 reduction, and the Km for Fd of one of them,
minor, turned out to be close to that of the NADP+ reduction

under the same experimental conditions (61). This finding
could explain not only the existence of O2 reduction in the
presence of NADP+, but also that this reduction occurred with
participation of Fd, which was oxidized by O2 in a reaction
possibly competing directly with NADP+ reduction.

Robinson (63) had proposed that the immediate electron
donors to O2 are Fd-dependent reductases located in the
stroma, nitrite reductase and glutamate synthase, whose pros-
thetic groups being reduced by Fd can be readily oxidized by
oxygen under a deficiency of specific substrates. Recently, it
was shown (52) that an isolated FAD-containing enzyme,
monodehydroascorbate reductase, when added into thylakoid
suspensions in the absence of Fd, becomes directly reduced at
the PSI acceptor side and then reduces dioxygen at a high
rate. Monodehydroascorbate reductase is situated in the
stroma and possibly attached to thylakoid membrane. Other
isolated flavoenzymes, glutathione reductase, Fd-NADP+ re-
ductase, glycolate oxidase, as well as free FAD possessed the
same capability (52). However, the authors of this work noted
that the autooxidation of MDA reductase and glutathione re-
ductase, if they were reduced by NADPH, was slow. In our
opinion, it may point to the necessity of participation of some
thylakoid component(s) in fast O2 reduction. Thus, in spite of
its long history, there is no consensual view on the mecha-
nism of dioxygen reduction at the acceptor side of PSI.

THE PARTICIPATION OF
PHOTOSYNTHETIC ELECTRON

TRANSPORT IN DETOXIFICATION OF ROS

Besides dismutation, nonspecific reactions of superoxides
with reductants situated in chloroplast, e.g., with ascorbate,
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FIG. 4. Oxygen reduction in PQ pool of thylakoid membrane. 1, reduction of O2 by PQH ·; 2, dismutation of formed super-
oxides; 3, release of superoxides to stroma; 4, reduction of superoxides by PQH2 accompanied by formation of H2O2 and new
PQH · molecule; 5, PQH· dismutation. Interaction of superoxides with the trap (ascorbate) outside the membrane is shown.
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produce H2O2. The scavenging of H2O2 in chloroplasts of
higher plants and algae is performed by peroxidases, the
major example of which is ascorbate peroxidase (APX) (for
reviews, see 6, 56). The enzyme has stromal and thylakoid-
bound (tAPX) forms. The cohesion of tAPX to membrane,
mainly in the PSI region (50), provides an interception of
most H2O2 molecules in the vicinity of thylakoid membrane
as the cohesion of SOD to membrane, also in the PSI region,
was shown (58). As a result of the peroxidase reaction

H2O2 + 2Asc = 2MDHA + 2H2O

monodehydroascorbate radical (MDHA) arises. It can dis-
mutate to form a relatively stable product, a dehydroascor-
bate (DHA). Both MDHA and DHA are reduced to ascorbate
by electrons coming from the PETC. In the chloroplast
stroma, MDHA radical can be reduced by a specific reduc-
tase with NADPH as electron donor, and DHA by glu-
tathione followed by rereduction of the latter also by
NADPH with participation of the corresponding reductase.
The sequence of events, from superoxide generation up to
ascorbate regeneration, in both cases occurs f inally at the ex-
pense of electrons coming from water, and results on the
whole in photoreduction of dioxygen to water with no
change in oxygen balance. It was named the water–water
cycle and described in detail by Asada (6).

In the context of the present work, a fact of fundamental
importance is the capacity of photosynthetic electron trans-
port to reduce MDHA by reduced Fd 34-fold faster than
NADP+ (51). In these experiments, MDHA was generated in
the suspension by added ascorbate oxidase, i.e., in the bulk
solution. If MDHA appears in the reaction catalyzed by
tAPX, it localizes near the membrane surface, and stimula-
tion of MDHA reduction by Fd was not observed when the
generation of MDHA occurred as the result of H2O2 addition
to thylakoids, which preserved active tAPX (20). However,
under the latter conditions, the competition between MDHA
and the effective electron acceptor at PSI, methyl viologen
(Mv), was observed (33). Figure 5 shows that oxygen uptake
accompanying Mv reduction (due to autooxidability of Mv)
decreased after appearance of MDHA, the reduction of which
is accompanied by oxygen evolution. The competition was
also found in intact chloroplasts, and in the latter case MDHA
accepted almost 20% of electrons even at 200 µM Mv in the
absence of other acceptors (31). Analysis of these data has
shown that the competition can be explained by prompt ar-
rival of MDHA to the site of its reduction. The data implied
that if MDHA was able to compete with Mv, then it could
compete with Fd in vivo. The decrease of NADP+ reduction in
(20) was obviously the effect of just this competition. The
properties of MDHA as electron acceptor can explain the
temporary cessation of photosynthesis in intact chloroplasts
having a functional scavenging system until H2O2 added into
a suspension was exhausted (55).

Thus, the maintenance of the system controlling the level
of H2O2 in chloroplasts is a top-priority task for photosyn-
thetic electron transport. One more point must be taken into
account. As MDHA is a very effective electron acceptor, its
appearance in the vicinity of thylakoid membrane may dimin-
ish the oxygen reduction.

Electron transport maintains a system controlling the level
of hydroperoxides through the reduction of these species
to harmless alcohols. The task of reducing hydroperoxides
is executed by recently described enzymes, phospholipid
hydroperoxide-dependent glutathione peroxidase (53) and 
2-cysteine peroxiredoxin (10). The first enzyme uses reduced
glutathione, and the chain of demand for reducing equivalents
from PETC finishes in NADPH. The immediate supplier of
electrons for the reaction catalyzed by the second enzyme is
not defined. If thioredoxin is the donor as it is supposed (11),
then the chain of demand turns out to be even shorter.

Finally, the detoxification of organic peroxyl and alkoxyl
radicals that is carried through by a-tocopherol produces
poorly reactive radical tocopherol-O?, which in its turn is re-
duced at the membrane surface by ascorbate. The ascorbate
regeneration again requires the electrons from PETC.

ROS LEVELS AND REDOX SIGNALING

PETC has capacities both to produce and to scavenge
ROS. It is accepted now that the response of plants to any en-
vironmental factor deviating from its optimal value, as well
as to wounding, includes an increased production of the ROS
(13). The control of the ROS level is necessary both to pre-
vent oxidative stress or, more accurately, oxidative damage of
cell components, and to provide some developmental pro-
cesses and the response in incompatible plant–pathogen inter-
actions (56). Taking into account the priority of usage of re-
ducing equivalents from PETC for ROS scavenging (see
above), the regulation must be directed f irstly to enzymatic
antioxidative systems.

H2O2, a rather stable substance that easily crosses biologi-
cal membranes, is considered a signal-transduction agent
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FIG. 5. Effects of H2O2 addition on the rate of light-in-
duced oxygen uptake in the presence of 5 mM Mv in thy-
lakoids with active and KCN-inhibited tAPX. The media
contained 5 µM Mv, 0.1 mM NaN3, 0.5 µM nigericin, 10 mM
ascorbate, and where indicated 1 mM KCN, pH 7.9. The addi-
tion of 430 µM H2O2 is shown by arrow. The data are from ref-
erence 32.

http://www.liebertonline.com/action/showImage?doi=10.1089/152308603321223531&iName=master.img-006.jpg&w=211&h=183


providing the system for the biosynthesis of enzymatic com-
ponents of antioxidation with information about ROS status
in the chloroplast and the cell (21, 43). The low-molecular
components of this system, glutathione and ascorbate, also
appear to accomplish such a task (57). In mammals and bac-
teria, the direct influence of H2O2 and glutathione on gene
transcription is established (35). The immediate mechanisms
for transmitting information to antioxidative genes about the
status of ROS and antioxidant pools are not fully known in
higher plants. However, the content of any component of
these pools reacting with each other may be the primary sig-
nal that influences gene expression.

It was recently shown with transgenic Arabidopsis that a
deficiency of 2-cysteine peroxiredoxin, which protects the
photosynthetic apparatus from damage by alkyl hydroperox-
ides, resulted in photosynthesis impairing and in decreased
levels of D1 protein and protein of light-harvesting complex
associated with PSII (11). At the same time, the activities of
tAPX and stromal APX and particularly of MDHA reductase,
as well as transcripts for these enzymes, increased (12). Pos-
sibly, the suppression of 2-cysteine peroxiredoxin led to an
increased expression of other antioxidative genes due to an
increased oxidation state of the leaf ascorbate pool that was
found in the same study. Thus, an ascorbate pool redox state
could be the signal to gene expression in response to the
emergence of hydroperoxides situated inside the membrane.
The oxidation of the ascorbate pool might, in its turn, be
brought about by its increased usage to regenerate a-toco-
pherol, which reduces peroxyl radicals. We connect these
data with our finding of increased oxygen uptake and possi-
ble emergence of peroxyl radicals and hydroperoxides in the
vicinity of PSII (40). These events may lead to the observed
(11) degradation of components of PSII and other protein
complexes connected with thylakoid membrane.

It has been found in several laboratories that gene expres-
sion in some way depends on the redox state of the PQ pool.
The genes whose expression revealed such a feature were:
the nuclear genes encoding light-harvesting complex pro-
teins (19); the chloroplast genes, which regulate the stoi-
chiometry of PSII to PSI (3, 60); and nuclear APX1 and
APX2 genes encoding cytosolic forms of ascorbate peroxi-
dase of Arabidopsis (37, 38).

We propose, based on our finding of generation of ROS in
the PQ pool, that ROS participate in signals transmitted to ad-
just photosystem stoichiometry. The advantage of redox sig-
naling through ROS generation in the PQ pool may be the
possibility of such generation not only at the PSI where the
ROS scavenging system is concentrated, but along the total
membrane surface as PQs are almost evenly distributed in
thylakoid membranes (see above).

The rapid expression of genes APX1 and APX2 that was in-
duced by transfer of Arabidopsis grown in moderate light to
intensive light could be induced in moderate light by treat-
ment of leaves with DBMIB, but inhibited in excessive light
by treatment with DCMU (38, 54). This result implies that the
redox status of the PQ pool is a factor that controls APX1 and
APX2 gene expression. Additional findings in these works
were that APX1 and APX2 expression could be induced by
treatment of leaves with H2O2 in low light, but not in the dark,
and that a decrease of the gene expression in excessive light

by DCMU could not be prevented by treatment with H2O2.
From these findings, the authors suggest that “ROS and direct
redox sensing of the PQ pool, independent of ROS genera-
tion, have to work concomitantly” (54). Here we suggest, in-
stead, that ROS production in the PQ pool may be sufficient
to explain the effects of PQ redox signals in photosynthetic
systems, removing the need for additional assumptions The
delocalized generation of these signals in thylakoid mem-
branes may be essential.
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ABBREVIATIONS

APX, ascorbate peroxidase; Chl, chlorophyll; DBMIB,
2,5-dibromo-6-isopropyl-3-methyl-p-benzoquinone; DCMU,
3-(3,4-dichlorophenyl)-1,1-dimethylurea; DHA, dehydro-
ascorbate; DIMEB, 2,3-dimethyl-5,6-methylenedioxy-p-
benzoquinone; DNP-INT, dinitrophenyl ether of 2-iodo-4-
nitrothymol; DPC, 1,5-diphenylcarbazide; Fd, ferredoxin;
H2O2, hydrogen peroxide; HO·, hydroxyl radical; MDHA,
monodehydroascorbate radical; Mv, methyl viologen; O2

·2,
superoxide radical; PETC, photosynthetic electron transport
chain; Pheo, pheophytin; PQ, PQH2, and PQH ·, plasto-
quinone, plastoquinol, and plastosemiquinone, respectively;
PSI and PSII, photosystem I and photosystem II, respec-
tively; QA and QB, primary and secondary quinone acceptors
in PSII; ROS, reactive oxygen species; SOD, superoxide dis-
mutase; tAPX, thylakoid-bound ascorbate peroxidase.
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